Operator Configuration
Advanced configuration options for the KFP Operator core components
This section provides comprehensive guidance for configuring the KFP Operator platform for production use. As a platform engineer, you’ll learn how to customize the operator behavior, set up providers, and optimize for your specific environment.
The KFP Operator configuration consists of several layers:
Core operator settings and behavior
ML orchestration platform integrations
RBAC, policies, and compliance settings
Observability and alerting setup
# values.yaml - Production configuration
manager:
replicas: 2 # High availability
resources:
requests:
cpu: 200m
memory: 256Mi
limits:
cpu: 1000m
memory: 1Gi
# Enable monitoring
monitoring:
create: true
serviceMonitor:
create: true
# Enable event system
statusFeedback:
enabled: true
# Production logging
logging:
verbosity: 1
# kubeflow-provider.yaml
apiVersion: pipelines.kubeflow.org/v1beta1
kind: Provider
metadata:
name: production-kfp
namespace: kfp-operator-system
spec:
type: kfp
kfp:
restKfpApiUrl: "https://kubeflow.company.com/pipeline"
uiUrl: "https://kubeflow.company.com/"
# Enable RBAC with custom roles
manager:
rbac:
create: true
additionalClusterRoles:
- name: kfp-operator-viewer
rules:
- apiGroups: ["pipelines.kubeflow.org"]
resources: ["pipelines", "runs"]
verbs: ["get", "list", "watch"]
# dev-values.yaml
manager:
replicas: 1
resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 500m
memory: 512Mi
logging:
verbosity: 2 # Debug logging
# Relaxed timeouts for development
argo:
stepTimeoutSeconds:
default: 3600 # 1 hour
# staging-values.yaml
manager:
replicas: 1
resources:
requests:
cpu: 150m
memory: 192Mi
limits:
cpu: 750m
memory: 768Mi
# Production-like settings with shorter retention
argo:
ttlStrategy:
secondsAfterCompletion: 1800 # 30 minutes
# prod-values.yaml
manager:
replicas: 3 # High availability
resources:
requests:
cpu: 300m
memory: 512Mi
limits:
cpu: 1500m
memory: 2Gi
# Production monitoring
monitoring:
create: true
serviceMonitor:
create: true
interval: 30s
# Strict security
rbac:
create: true
webhookCertificates:
provider: cert-manager
# Debug Helm template rendering
helm template kfp-operator kfp-operator/kfp-operator \
--values values.yaml \
--debug \
--output-dir ./debug-output
# Check for YAML syntax errors
yamllint values.yaml
# Test provider connectivity
kubectl run debug-pod --image=curlimages/curl --rm -it -- \
curl -v http://kubeflow-provider-url/api/v1/healthz
# Check DNS resolution
kubectl run debug-pod --image=busybox --rm -it -- \
nslookup kubeflow-provider-hostname
For configuration issues:
Ready to configure your platform? Start with the Operator Configuration guide for core settings, then move on to Provider Setup for ML platform integration.