TensorFlow Extended (TFX)
To create a TFX pipeline:
- Ensure your Provider supports TFX by specifying the TFX image in
spec.frameworks[]
. - Create a Pipeline resource, specifying:
- the
tfx
framework inspec.framework.name
. This needs to match the name specified in the Provider. - the fully qualified name of the Python function creating TFX pipeline components under
spec.framework.parameters[].components
. - any required beam arguments under
spec.framework.parameters[].beamArgs
.
TFX Parameters
Name | Description |
---|---|
components | Fully qualified name of the Python function creating TFX pipeline components. |
beamArgs[] | List of named objects. These will be provided as beam_pipeline_args when compiling the pipeline. |
TFX Pipeline resource example
apiVersion: pipelines.kubeflow.org/v1beta1
kind: Pipeline
metadata:
name: penguin-pipeline
spec:
provider: provider-namespace/provider-name
image: kfp-quickstart:v1
framework:
name: tfx
parameters:
pipeline: penguin_pipeline.pipeline.create_components
beamArgs:
- name: anArg
value: aValue