Provider
The Provider resource represents the provider specific configuration required to submit / update / delete ml resources with the given provider.
e.g Kubeflow Pipelines or the Vertex AI Platform.
Providers configuration can be set using this resource and permissions for access can be configured via service accounts.
Common Fields
Name | Description | Example |
---|
spec.image * | Container image of the provider | kfp-operator-kfp-provider:0.0.2 |
spec.executionMode * | KFP compiler execution mode | v1 (currently KFP) or v2 (Vertex AI) |
spec.serviceAccount * | Service Account name to be used for all provider-specific operations (see respective provider) | kfp-operator-vertex-ai |
spec.defaultBeamArgs | Default Beam arguments to which the pipeline-defined ones will be added | - name: project value: my-gcp-project |
spec.pipelineRootStorage | The storage location used by TFX (pipeline-root ) to store pipeline artifacts and outputs - this should be a top-level directory and not specific to a single pipeline | gcs://kubeflow-pipelines-bucket |
* field automatically populated by Helm based on provider type
Kubeflow:
apiVersion: pipelines.kubeflow.org/v1alpha5
kind: Provider
metadata:
name: kfp
namespace: kfp-operator
spec:
image: kfp-operator-kfp-provider:<version>
defaultBeamArgs:
- name: project
value: <project>
executionMode: v1
pipelineRootStorage: gs://<storage_location>
serviceAccount: kfp-operator-kfp
parameters:
grpcKfpApiAddress: ml-pipeline.kubeflow:8887
grpcMetadataStoreAddress: metadata-grpc-service.kubeflow:8080
kfpNamespace: kubeflow
restKfpApiUrl: http://ml-pipeline.kubeflow:8888
Kubeflow Specific Parameters
Name | Description |
---|
parameters.grpcKfpApiAddress | The exposed grpc endpoint used to interact with Kubeflow pipelines |
parameters.grpcMetadataStoreAddress | The exposed grpc endpoint used for metadata store with Kubeflow pipelines |
parameters.kfpNamespace | The namespace where Kubeflow is deployed |
parameters.restKfpApiUrl | The exposed restful endpoint used to interact with Kubeflow pipelines |
Vertex AI:
apiVersion: pipelines.kubeflow.org/v1alpha5
kind: Provider
metadata:
name: vai
namespace: kfp-operator
spec:
image: kfp-operator-vai-provider:<version>
defaultBeamArgs:
- name: project
value: <project>
executionMode: v2
pipelineRootStorage: gs://<storage_location>
serviceAccount: kfp-operator-vai
parameters:
eventsourcePipelineEventsSubscription: kfp-operator-vai-run-events-eventsource
maxConcurrentRunCount: 1
pipelineBucket: pipeline-storage-bucket
vaiJobServiceAccount: kfp-operator-vai@<project>.iam.gserviceaccount.com
vaiLocation: europe-west2
vaiProject: <project>
Vertex AI Specific Parameters
Name | Description |
---|
parameters.eventsourcePipelineEventsSubscription | The eventsource subscription used to capture run-completion events |
parameters.maxConcurrentRunCount | The number of pipelines that may run concurrently |
parameters.pipelineBucket | The output storage bucket for a trained pipeline model |
parameters.vaiJobServiceAccount | The service account should be used by VAI when submitting a pipeline |
parameters.vaiLocation | The region VAI should run a pipeline within |
parameters.vaiProject | The project VAI should run a pipeline within |